Synopsis
ID13 is dedicated to high-spatial-resolution diffraction and scattering experiments using focused monochromatic x-ray beams. Two endstations, a microbranch and a nanobranch, are operated in serial mode.
Status:
open
Disciplines
- Life Sciences
- Materials and Engineering
- Environmental Sciences
- Earth and Planetary Sciences
- Chemistry
- Physics
- Cultural Heritage
- Medicine
Applications
- Hierarchically structured materials
- Biological fibers and tissues (bio-materials, bio-medical applications)
- Polymer research
- Food science
- Earth and planetary science
- Nano-composites
- Semiconductors
- Nano-structures
- Nanobeam x-ray optics
Techniques
-
GISAXS - grazing incidence small-angle scattering
-
Microcrystallography
-
SAXS - small-angle X-ray scattering
-
XRD - X-ray diffraction
-
XRF - X-ray fluorescence
Beam size
- Minimum (H x V) : 100.0
x 100.0
nm²
-
Maximum (H x V) : 20.0
x 20.0
µm²
Sample environments
- Low temperature (90K, liquid-nitrogen-based cryostream, microbranch only)
- Humdidity control for small samples (< 1 mm^3)
- In-situ sample manipulation in aqueous solutions (contact-free)
- Micro-fluidics
Detectors
- Dectris EigerX 4M (2070 x 2167 pixel, 75 micron pixel size)
- FReLoN4M Detector (2048 x 2048 pixel, ~50 micron pixel size)
- Maxipix 2x2 four-element pixel detector (516 x 516 pixel, 55 micron pixel size)
- 2 VortexEM XRF detectors (on permanent loan from Ghent University)
Technical details
The available beam parameters such as spot size, divergence, and flux vary with the incident photon energy (e.g. highest flux available close to standard energies 12.5 and 25 keV). In SAXS with nanobeam scanning, minimum q is coupled with beam size. Various combinations of scanning mode, beam size, and fluorescence mode are available depending on the technique chosen.
Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modelling
Meindlhumer M., Brandt L.R., Zalesak J., Rosenthal M., Hruby H., Kopecek J., Salvati E., Mitterer C., Daniel R., Todt J., Keckes J., Korsunsky A.M.,
Materials & Design 198, 109365-1-109365-16 (2021)
Multiscale characterization of embryonic long bone mineralization in mice
Barreto I.S., Le Cann S., Ahmed S., Sotiriou V., Turunen M.J., Johansson U., Rodriguez-Fernandez A., Grünewald T.A., Liebi M., Nowlan N.C., Isaksson H.,
Advanced Science 7, 2002524-1-2002524-13 (2020)
A novel operando approach to analyze the structural evolution of metallic materials during friction with application of synchrotron radiation
Bataev I.A., Lazurenko D.V., Bataev A.A., Burov V.G., Ivanov I.V., Emurlaev K.I., Smirnov A.I., Rosenthal M., Burghammer M., Ivanov D.A., Georgarakis K., Ruktuev A.A., Ogneva T.S., Jorge A.M.J.,
Acta Materialia 196, 355-369 (2020)
Large field-of-view scanning small-angle X-ray scattering of mammalian cells
Cassini C., Wittmeier A., Brehm G., Denz M., Burghammer M., Köster S.,
Journal of Synchrotron Radiation 27, 1059-1068 (2020)
Multi-scale interface design of strong and damage resistant hierarchical nanostructured materials
Daniel R., Meindlhumer M., Zalesak J., Baumegger W., Todt J., Ziegelwanger T., Keckes J.F., Mitterer C., Keckes J.,
Materials and Design 196, 109169-1-109169-11 (2020)
Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures
de la Mora E., Coquelle N., Bury C.S., Rosenthal M., Holton J.M., Carmichael I., Garman E.F., Burghammer M., Colletier J.P., Weik M.,
Proceedings of the National Academy of Sciences of the USA 117, 4142-4151 (2020)